Что такое мидель судна. Конструктивный мидель шпангоут сухогрузного судна. Что такое теоретический чертёж

Главные размерения судна влияют на технические и эксплуатационные характеристики изделия. Строительство лодки всегда начинается с измерений, определения размеров и составления теоретического чертежа судна. Перечисленные характеристики дают более полное понимание об обводах и их характеристиках.

Ключевые измерения

Основные размерения судна подразумевают 4 основных размера: длина, ширина, бортовая высота и уровень осадки.

После достоверного определения перечисленных величин владелец или конструктор может принимать решения в отношении разнообразных эксплуатационных задач: метод выполнения швартовки на причале, способность к передвижению по мелководным местам, уровень грузоподъёмности. Сегодня выделяют несколько значений перечисленных величин:

  • наибольшие размеры длины в проектных документах обозначаются Lнб. Определяется как дистанция между крайними наружными точками конструкции при измерении вдоль корпуса;
Главные размерения судна влияют на технические и эксплуатационные характеристики изделия
  • длина в отношении конструктивной ватерлинии судна (КВЛ). Изначально рассмотрим, что такое ватерлиния судна – это линия касания воды и корпуса лодки. У начинающих конструкторов и многих владельцев возникает вопрос, что такое КВЛ? КВЛ – это расстояние между дальними точками корпуса, которое для измерений использует зеркало воды при максимальной нагрузке на судно (количество веса и процентное отношение к максимальной грузоподъёмности может отличаться);
  • наибольшая ширина отмечается с помощью Внб, её измеряют в области максимальной ширины судна. Измерения проводят по внешним граням;
  • ширина по КВЛ определяется как дистанция между конечными точками по ширине вдоль нахождения ватерлинии;
  • высота в области миделя. Предварительно следует определить, что такое мидель? Мидель судна – это плоскость, располагающаяся поперёк лодки и имеющая вертикальную направленность, которая проходит в центре длины лодки. Преимущественно на чертежах мидель – это значок H. Для её измерения применяется замер от килевой части (нижняя точка) до верхушки борта;
  • высота части борта, находящаяся над водой (F). Измеряется от ватерлинии до верхушки борта. Преимущественно надводная часть борта определяется на миделе, но дополняют информацию значениями на носу и корме;
  • средние показатели осадки (T) определяются, как значения углубления лодки в воду при увеличении давления. Чаще для этого используется мидель от КВЛ до нижней отметки киля.

Основные габариты

Помимо ключевых значений, теоретический чертеж корпуса судна часто содержит обозначения габаритов:

  • длина судна, включая выступающие элементы штевней;
  • габаритная осадка – это измерение от КВЛ до нижнего участка судна (до шпоры ПМ или других элементов);

Основные сечения корпуса
  • ширина по габаритам, определяющаяся по выступам бортиков или по привальным брусьям;
  • габаритная высота – это размерение от самой нижней до верхней части судна.

Существуют значения, заданные в точных цифрах, но корпус часто характеризуется дополнительными измерениями, которые выступают в виде соотношения величин. Частыми значениями являются отношения:

  • длины и ширины вдоль линии погружения лодки (L/B), позволяет определить ходкость конструкции, так как при увеличении L/B судно становится более быстроходным, при условии, что оно имеет водоизмещающий тип. Определяет также остойчивость, соответственно, при снижении L/B и сохранении длины судно становится более остойчиво;
  • ширины вдоль конструктивной ватерлинии к осадке (В/Т). Показатель обеспечивает данными о ходкости, уровне мореходности и остойчивости конструкции. По мере увеличения соотношения, судно становится более остойчивым, но снижается способность удерживать прежнюю скорость при появлении волн на воде. Узкие, глубокопогружённые корпуса легче переносят волны;
  • максимальной длины и бортовой высоты судна в области миделя (Lнб/H). Описывается жёсткость днища и его прочность. Чем меньше этот показатель, тем больше прочность корпуса;
  • абсолютной высоты борта к способности давать осадку (H/T). Показывает запас плавучести лодки. При увеличении этого показателя, запас становится больше, соответственно, судно способно выдержать большую нагрузку без риска попадания волн в кокпит.

Геометрия корпуса судна

Что такое теоретический чертёж?

Теоретический чертёж – это рисунок на бумажном листе, описывающий сложную конструкцию корпуса по поверхности. Для полного понимания строения используется 3 проекции при перпендикулярном пересечении. На чертеже видны места соединения обшивки снаружи пересекающимися плоскостями, в этом отношении существуют специальные правила. Для построения корабля обязательно 3 плоскости: основная, мидель-шпангоута, диаметральная. Основные сечения корпуса судна:

  • диаметральная плоскость (ДП) судна. ДП судна – это плоскость, идущая вертикально и делящая весь корпус на 2 равные части вдоль длины;
  • основная плоскость (ОП) судна – это вид корабля снизу, плоскость координат строго горизонтальная;
  • плоскость миделя. Последняя важная плоскость мидель-шпангоута проходит вертикально поперёк длины. Многие не знают, что такое строение чертежа позволяет увидеть тип бортов, разновидность шпангоутов и строение кокпита.

Для получения всех трех видов теоретического чертежа необходимо представить разрез судна по перечисленным траекториям, параллельным трем плоскостям. На проекции бокового вида отражаются следы разреза корпуса одной плоскостью точно по центру вдоль всей длинны. Подобные следы имеют название батоксы. Второе сечение выполняется равностоящими плоскостями по горизонтали снизу ватерлинии (полуширота). Следы от разреза днища позволяют получить информацию о корпусе.

Все линии чертежа на одной проекции имеют кривую форму, а на остальных представлены ровно. Шпангоуты при взгляде сбоку или полушироты будут представлены только в виде линий, но на самом деле их всегда выполняют криволинейно. Ватерлиния имеет прямой вид сбоку и на сечении «корпус», а батоксы – на корпусе и полушироте.
Теоретический чертеж судна

Чертежи выполняются с точки зрения симметричности ДП, соответственно, на полушироте отображают ватерлинию левого борта. С правой стороны корпус очерчивают обводами шпангоутов носа, а слева – кормы, чтобы не нагромождать каждый чертёж.

Что такое коэффициенты полноты?

Коэффициент полноты водоизмещения – это важнейший параметр чертежа, так как он отражает объём воды, которую корпус вытеснит при погружении до ватерлинии. Водоизмещение имеет объёмную характеристику и позволяет определить габариты судна, вместимость конструкции и мореходные свойства.

Водоизмещение не является статической величиной, ведь имеет зависимость от уровня нагрузки на судно, соответственно, выделяют некоторые разновидности:

  • полное. Подразумевается, что на борту присутствует полный бак горючего, необходимое количество воды для питья, экипаж и провиант;
  • порожнее – это способность выталкивания воды с установкой на борту двигателя, снабжения, но при отсутствии горючего, личных вещей, провизии и людей;
  • обмера. На борту присутствуют паруса, снабжение, но нет экипажа, горючего и других вещей. Используется только для парусных видов лодок.

Значение водоизмещения на чертежах описывается буквой V и измеряется в м 3 . Используется для определения характеристик коэффициентов полноты судна. Существует некоторое отличие от весового водоизмещения, так как последний показатель описывает груз судна и вычисляется в тоннах, а коэффициенты полноты судна учитывают плотность воды. Расчёты проводятся по формуле D = p*V, где p – справочная плотность воды.

Исходные данные:

L = 96.5м – длина расчетная;

B = 15,8м – ширина;

Н = 10,2м – высота борта;

Т = 7,1м – осадка;

R = 1,20м – радиус скругления скулы;

Sфл = 9,0мм – толщина флора;

? № 22б – шпангоут полособульб;

? № 18а – бимс-полособульб;

Sдд = 9,0мм – толщина настила двойного дна;

Sxh = 12×450мм – стенка карлингса;

Sxb = 14×220мм – поясок карлингса;

Sп = 11мм – толщина настила палубы;

Sб = 12мм – толщина наружной обшивки борта;

Sдн = 14мм – толщина днища.

1.Введение

На корпус движущегося судна могут действовать постоянные и случайные
нагрузки.

Постоянные нагрузки, действующие в течение всего периода эксплуатации, –
это вес корпуса, надстроек, судовых механизмов и принятого груза, силы
поддержания и силы сопротивления воды движению судна. Силы веса судна и
силы гидростатического поддержания направлены в противоположные стороны
и уравновешивают друг друга. По длине судна эти силы распределены
неравномерно. Так в трюмах, расположенных в средней части судна, груза
больше, чем в концевых трюмах, особенно в первом. При полной загрузке
судна генеральным грузом форпик и ахтерпик часто бывают пустыми. Главный
двигатель занимает небольшую площадь в машинном отделении, но масса его
значительна. Однако общая масса механизмов в машинном отделении обычно
меньше, чем масса груза в полностью загруженном трюме. Силы поддержания
также неравномерно распределены по судну. Их интенсивность зависит от
величины вытесняемых объемов, которые постепенно уменьшаются от середины
судна к оконечностям при плавании судна на тихой воде и непрерывно
изменяются в условиях волнения.

Случайные нагрузки воздействуют на корпус в течение какого-либо
промежутка времени и возникают при ударах волн, посадке судна на мель,
столкновении судов.

Для упрощения расчетов действующие нагрузки условно делят на две
категории: вызывающие общий изгиб корпуса или местный изгиб отдельных
его элементов.

На тихой воде характер общей деформации корпуса обычно сохраняется в
течение всего рейса, если распределение основных грузов или балласта
постоянное. Изменяется только степень кривизны корпуса в ДП по мере
расхода топлива и запасов. На волнении общая деформация корпуса
изменяется циклически множество раз: прогиб корпуса чередуется с
перегибом. Прочность корпуса обеспечивается с учетом повторяемости
нагрузок. Наибольший изгибающий момент действует в районе середины
судна.

Способность корпуса выдерживать нагрузки, действующие на отдельные его
перекрытия и связи, определяет местную прочность. Среди местных нагрузок
выделяют гидростатическое давление при аварийных затоплениях отсеков,
сосредоточенные и распределенные силы при приеме и снятии грузов в
районе грузоподъемных устройств, реакции кильблоков при постановке в
док, сосредоточенные силы при швартовке и буксировке, силы обжатия
корпуса льдом при ледовой проводке судна.

Фактически напряжения в конструкциях корпуса вычисляют как
алгебраическую сумму напряжений от общего изгиба и местных нагрузок.

2. Выбор системы набора и материала корпуса.

На сравнительно небольших судах (длиной до 100 метров) величина
изгибающего момента от общего продольного изгиба корпуса сравнительно
невелика. Определяющими для таких судов являются местные нагрузки:
давление груза, воды, удары волн, удары льдин и другие.

Размеры основных связей корпуса таких судов определяются, в основном, из
условий обеспечения местной прочности, но они достаточны для обеспечения
общей прочности судна. Общая продольная прочность судов длиной до 100
метров обеспечивается при сравнительно небольших толщинах наружной
обшивки и настила верхней палубы.

Местная прочность корпуса легко обеспечивается при поперечной системе
набора перекрытий. При поперечной системе набора главные связи
расположены поперек судна. Связи днищевого перекрытия, за исключением
далеко отстоящих друг от друга продольных связей состоят из сплошных или
бракетных флоров на каждом практическом шпангоуте; связи бортового
перекрытия состоят из шпангоутов с нормальным расстоянием друг от друга;
связи палубного перекрытия состоят из бимсов.

Поперечная система набора сравнительно проста и экономична.

Исходя из приведенных данных, в данной работе считаем, что корпус набран
по поперечной системе набора.

Для судов небольшой длины (до 120м) применяется обычно сталь
углеродистая судостроительная марки ВСт3спII с пределом текучести ReH =
235 МПа. Так как L = 96.5м, то в данной работе принимаем, что для
постройки судна будет применяться сталь именно этой мерки.

3. Расчет основных связей корпуса

3.1 Вертикальный киль

Высота вертикального киля определяется по эмпирической формуле:

hвк = 0,0078L + 0,3 = 0,0078*96,5 + 0,3 = 1,053м,

где L – расчетная длина судна, м.

Принимаем hвк = 1м = 1000мм.

Толщина вертикального киля определяется по формуле:

hвк 235 1000
235

Sвк = ((*((= ((*((= 12,5мм,

80 ReH 80
235

где ReH – предел текучести стали, которая принимается для постройки
данного судна, м.

Согласно выпускаемым в промышленности листам принимаем толщину
вертикального киля Sвк = 13,0мм.

3.2 Шпация

Шпация определяется по формуле:

а = 0,002L + 0,48 = 0,002*96,5 + 0,48 = 0,67м.

Принимаем шпацию а = 700мм.

3.3 Днищевые стрингеры

Число днищевых стрингеров определяется в зависимости от ширины судна.

Исходя из того, что судно набрано по поперечной системе и В = 15,8м
(т.е. 8(В(16), располагаем по одному днищевому стрингеру с каждого
борта.

Толщина днищевого стрингера Sст равна толщине флора Sст = Sфл = 9,0мм.

На флоре высотой более 900мм должны быть поставлены ребра жесткости
толщиной не менее 0,8Sфл и высотой не менее 10 толщин ребра, но не
более 90мм.

Принимаем Sрж =8мм.

При поперечной системе набора ребра жесткости флора устанавливаются
так, чтобы неподкрепленный пролет флора не превышал 1,5м, поэтому в
данной работе днищевой стрингер смещен. Одно из ребер жесткости
располагается непосредственно под концом скуловой кницы.

Для доступа в междудонное пространство необходимо во флоре сделать лазы.
Минимальная высота лаза 500мм, минимальная длина 500мм. Лазы
располагаются посредине высоты флора. Отстояние кромки лаза от
вертикального киля составляет 0,5 высоты вертикального киля. Отстояние
кромки лаза от днищевого стрингера и ребер жесткости флора составляет
0,25 высоты флора в данном сечении.

Междудонное пространство используется для приемки балласта и технической
воды. Кроме того, при доковании судна проверяется непроницаемость
отсеков двойного дна наливом воды. Для вывода воздуха из отсеков
двойного дна в атмосферу предусмотрены воздушные трубы, выходящие на
верхнюю палубу. В верхней части флора у настила второго дна для выхода
воздуха при заполнении отсека двойного дна жидкостью предусмотрены
вырезы полукруглые диаметром 50мм. Для возможности осушения отсека во
флорах выполнены аналогичные вырезы у обшивки днища.

3.5 Скуловая кница

Скуловая кница служит для соединения шпангоута с флором.

Высота скуловой кницы:

hкн = 0,1lшп,

где lшп – пролет шпангоута, который определяется по формуле:

lшп = Н – hвк = 10,2 – 1,0 = 9,2 м.

Тогда получим значение высоты скуловой кницы:

hкн = 0,1*9,2 = 0,92м = 920мм.

Принимаем hкн = 900мм.

Ширина скуловой кницы:

bск кн = hск кн + hшп = 900 + 220 = 1120мм,

hшп – высота шпангоута, определяемая по номеру шпангоута полособульба.

3.6 Междудонный лист

На современных судах в трюмах междудонный лист выполняется
горизонтальным.

Ширина междудонного листа:

bмл = bск кн + 40 = 1120 + 40 = 1160мм.

Междудонный лист подвержен интенсивной коррозии, поэтому его толщина
принимается на 1мм толще остальных листов настила второго дна

Sмл = Sдд + 1,0 = 9 + 1 = 10мм.

3.7 Бимсовая кница

Бимсовая кница имеет два одинаковых катета С, величина которого может
быть принята:

С = 1,5hбимса = 1,5*180 = 270мм,

где hбимса – высота бимса согласно номеру профиля.

Толщина бимсовой кницы равна толщине стенки бимса Sкн = 8мм.

Так как катет бимсовой кницы С (250мм, предусмотрен фланец по свободной
кромке кницы для обеспечения ее жесткости – отогнутая свободная кромка
под углом ~90(шириной 10 толщин кницы, т.е. 80мм.

3.8 Наружная обшивка

Ширстрек – усиленный лист обшивки борта.

Ширина ширстрека bш (0,1Н, м и может быть принята в пределах от 500 до
2000мм. Принимаем bш =1100мм.

Толщина ширстрека Sш принимается равной толщине наружной обшивки борта
или настила палубы, что больше. Принимаем Sш = 12мм.

Горизонтальный киль – усиленный лист обшивки днища.

Ширина горизонтального киля определяется в зависимости от длины судна.
Для судна длина L (80м ширина горизонтального киля определяется по
формуле:

bгк =0,004L + 0,9 = 0,004*96,5 + 0,9 = 1290мм.

Принимаем bгк = 1300мм.

Толщина горизонтального киля (мм) должна быть больше толщины листов
обшивки днища в средней части судна на величину

(S = 0,03L + 0,6 = 0,03*96,5 + 0,6 = 3,5мм,

но эта величина не может превышать 3 мм, поэтому принимаем (S = 3 мм и
соответственно Sгк = 17 мм.

3.9 Настил палубы

Так как толщина обшивки борта больше толщины настила палубы, крайний
лист настила, примыкающий к борту, должен быть усилен, т.е. необходимо
определить размеры палубного стрингера.

Ширина палубного стрингера равна ширине горизонтального киля bпс =
bгк = 1300мм.

Толщина палубного стрингера принимается равной толщине обшивки борта
Sпс = Sб = 12мм.

Примечание: Все необходимые построения произведены, и все необходимые
размеры указаны на чертеже, прилагаемом к расчетно-пояснительной
записке.

Литература:

Фрид Е.Г. Устройство судна – Л. : Судостроение, 1969.

Смирнов Н.Г. Теория и устройство судна – М. : Транспорт, 1992.

Р. Допатка, А. Перепечко Книга о судах – Л. : Судостроение, 1981.

Исходные данные:

L = 96.5м – длина расчетная;

B = 15,8м – ширина;

Н = 10,2м – высота борта;

Т = 7,1м – осадка;

R = 1,20м – радиус скругления скулы;

S фл = 9,0мм – толщина флора;

№ 22 б – шпангоут полособульб;

№ 18 а – бимс-полособульб;

S дд = 9,0мм – толщина настила двойного дна;

S x h = 12 x 450 мм – стенка карлингса;

S x b = 14 x 220 мм – поясок карлингса;

S п = 11мм – толщина настила палубы;

S б = 12мм – толщина наружной обшивки борта;

S дн = 14мм – толщина днища.

1.Введение

На корпус движущегося судна могут действовать постоянные и случайные нагрузки.

Постоянные нагрузки, действующие в течение всего периода эксплуатации, - это вес корпуса, надстроек, судовых механизмов и принятого груза, силы поддержания и силы сопротивления воды движению судна. Силы веса судна и силы гидростатического поддержания направлены в противоположные стороны и уравновешивают друг друга. По длине судна эти силы распределены неравномерно. Так в трюмах, расположенных в средней части судна, груза больше, чем в концевых трюмах, особенно в первом. При полной загрузке судна генеральным грузом форпик и ахтерпик часто бывают пустыми. Главный двигатель занимает небольшую площадь в машинном отделении, но масса его значительна. Однако общая масса механизмов в машинном отделении обычно меньше, чем масса груза в полностью загруженном трюме. Силы поддержания также неравномерно распределены по судну. Их интенсивность зависит от величины вытесняемых объемов, которые постепенно уменьшаются от середины судна к оконечностям при плавании судна на тихой воде и непрерывно изменяются в условиях волнения.

Случайные нагрузки воздействуют на корпус в течение какого-либо промежутка времени и возникают при ударах волн, посадке судна на мель, столкновении судов.

Для упрощения расчетов действующие нагрузки условно делят на две категории: вызывающие общий изгиб корпуса или местный изгиб отдельных его элементов.

На тихой воде характер общей деформации корпуса обычно сохраняется в течение всего рейса, если распределение основных грузов или балласта постоянное. Изменяется только степень кривизны корпуса в ДП по мере расхода топлива и запасов. На волнении общая деформация корпуса изменяется циклически множество раз: прогиб корпуса чередуется с перегибом. Прочность корпуса обеспечивается с учетом повторяемости нагрузок. Наибольший изгибающий момент действует в районе середины судна.

Способность корпуса выдерживать нагрузки, действующие на отдельные его перекрытия и связи, определяет местную прочность. Среди местных нагрузок выделяют гидростатическое давление при аварийных затоплениях отсеков, сосредоточенные и распределенные силы при приеме и снятии грузов в районе грузоподъемных устройств, реакции кильблоков при постановке в док, сосредоточенные силы при швартовке и буксировке, силы обжатия корпуса льдом при ледовой проводке судна.

Фактически напряжения в конструкциях корпуса вычисляют как алгебраическую сумму напряжений от общего изгиба и местных нагрузок.

2. Выбор системы набора и материала корпуса.

На сравнительно небольших судах (длиной до 100 метров) величина изгибающего момента от общего продольного изгиба корпуса сравнительно невелика. Определяющими для таких судов являются местные нагрузки: давление груза, воды, удары волн, удары льдин и другие.

Размеры основных связей корпуса таких судов определяются, в основном, из условий обеспечения местной прочности, но они достаточны для обеспечения общей прочности судна. Общая продольная прочность судов длиной до 100 метров обеспечивается при сравнительно небольших толщинах наружной обшивки и настила верхней палубы.

Местная прочность корпуса легко обеспечивается при поперечной системе набора перекрытий. При поперечной системе набора главные связи расположены поперек судна. Связи днищевого перекрытия, за исключением далеко отстоящих друг от друга продольных связей состоят из сплошных или бракетных флоров на каждом практическом шпангоуте; связи бортового перекрытия состоят из шпангоутов с нормальным расстоянием друг от друга; связи палубного перекрытия состоят из бимсов.

Поперечная система набора сравнительно проста и экономична.

Исходя из приведенных данных, в данной работе считаем, что корпус набран по поперечной системе набора.

Для судов небольшой длины (до 120м) применяется обычно сталь углеродистая судостроительная марки ВСт3спII с пределом текучести R eH = 235 МПа. Так как L = 96.5м, то в данной работе принимаем, что для постройки судна будет применяться сталь именно этой мерки.

3. Расчет основных связей корпуса

3.1 Вертикальный киль

Высота вертикального киля определяется по эмпирической формуле:

h вк = 0,0078L + 0,3 = 0,0078*96,5 + 0,3 = 1,053м,

где L – расчетная длина судна, м.

Принимаем h вк = 1м = 1000мм.

Толщина вертикального киля определяется по формуле:

h вк 235 1000 235

S вк = ¾¾*¾¾ = ¾¾*¾¾ = 12,5мм,

где R eH – предел текучести стали, которая принимается для постройки данного судна, м.

Согласно выпускаемым в промышленности листам принимаем толщину вертикального киля S вк = 13,0мм.

3.2 Шпация

Шпация определяется по формуле:

а = 0,002L + 0,48 = 0,002*96,5 + 0,48 = 0,67м.

Принимаем шпацию а = 700мм.

3.3 Днищевые стрингеры

Число днищевых стрингеров определяется в зависимости от ширины судна.

Исходя из того, что судно набрано по поперечной системе и В = 15,8м (т.е. 8<В£16), располагаем по одному днищевому стрингеру с каждого борта.

Толщина днищевого стрингера S ст равна толщине флора S ст =S фл = 9,0мм.

3.4 Флор

На флоре высотой более 900мм должны быть поставлены ребра жесткости толщиной не менее 0,8S фл и высотой не менее 10 толщин ребра, но не более 90мм.

Принимаем S рж =8мм.

При поперечной системе набора ребра жесткости флора устанавливаются так, чтобы неподкрепленный пролет флора не превышал 1,5м, поэтому в данной работе днищевой стрингер смещен. Одно из ребер жесткости располагается непосредственно под концом скуловой кницы.

Для доступа в междудонное пространство необходимо во флоре сделать лазы. Минимальная высота лаза 500мм, минимальная длина 500мм. Лазы располагаются посредине высоты флора. Отстояние кромки лаза от вертикального киля составляет 0,5 высоты вертикального киля. Отстояние кромки лаза от днищевого стрингера и ребер жесткости флора составляет 0,25 высоты флора в данном сечении.

Междудонное пространство используется для приемки балласта и технической воды. Кроме того, при доковании судна проверяется непроницаемость отсеков двойного дна наливом воды. Для вывода воздуха из отсеков двойного дна в атмосферу предусмотрены воздушные трубы, выходящие на верхнюю палубу. В верхней части флора у настила второго дна для выхода воздуха при заполнении отсека двойного дна жидкостью предусмотрены вырезы полукруглые диаметром 50мм. Для возможности осушения отсека во флорах выполнены аналогичные вырезы у обшивки днища.

3.5 Скуловая кница

Скуловая кница служит для соединения шпангоута с флором.

Высота скуловой кницы:

h кн = 0,1l шп,

где l шп – пролет шпангоута, который определяется по формуле:

l шп = Н – h вк = 10,2 – 1,0 = 9,2 м.

Тогда получим значение высоты скуловой кницы:

h кн = 0,1*9,2 = 0,92м = 920мм.

Принимаем h кн = 900мм.

Ширина скуловой кницы:

b ск кн = h ск кн + h шп = 900 + 220 = 1120мм,

h шп – высота шпангоута, определяемая по номеру шпангоута полособульба.

3.6 Междудонный лист

На современных судах в трюмах междудонный лист выполняется горизонтальным.

Ширина междудонного листа:

b мл = b ск кн + 40 = 1120 + 40 = 1160мм.

Междудонный лист подвержен интенсивной коррозии, поэтому его толщина принимается на 1мм толще остальных листов настила второго дна

S мл = S дд + 1,0 = 9 + 1 = 10мм.

3.7 Бимсовая кница

Бимсовая кница имеет два одинаковых катета С, величина которого может быть принята:

С = 1,5h бимса = 1,5*180 = 270мм,

где h бимса - высота бимса согласно номеру профиля.

Толщина бимсовой кницы равна толщине стенки бимса S кн = 8мм.

Так как катет бимсовой кницы С > 250мм, предусмотрен фланец по свободной кромке кницы для обеспечения ее жесткости – отогнутая свободная кромка под углом ~90° шириной 10 толщин кницы, т.е. 80мм.

3.8 Наружная обшивка

Ширстрек – усиленный лист обшивки борта.

Ширина ширстрека b ш ³ 0,1Н, м и может быть принята в пределах от 500 до 2000мм. Принимаем b ш =1100мм.

Толщина ширстрека S ш принимается равной толщине наружной обшивки борта или настила палубы, что больше. Принимаем S ш = 12мм.

Горизонтальный киль – усиленный лист обшивки днища.

Ширина горизонтального киля определяется в зависимости от длины судна. Для судна длина L ³ 80м ширина горизонтального киля определяется по формуле:

b гк =0,004L + 0,9 = 0,004*96,5 + 0,9 = 1290мм.

Принимаем b гк = 1300мм.

Толщина горизонтального киля (мм) должна быть больше толщины листов обшивки днища в средней части судна на величину

DS = 0,03L + 0,6 = 0,03*96,5 + 0,6 = 3,5мм,

но эта величина не может превышать 3 мм, поэтому принимаем DS = 3 мм и соответственно S гк = 17 мм.

3.9 Настил палубы

Так как толщина обшивки борта больше толщины настила палубы, крайний лист настила, примыкающий к борту, должен быть усилен, т.е. необходимо определить размеры палубного стрингера.

Исходные данные:

L = 96.5м – длина расчетная;

B = 15,8м – ширина;

Н = 10,2м – высота борта;

Т = 7,1м – осадка;

R = 1,20м – радиус скругления скулы;

Sфл = 9,0мм – толщина флора;

‪№ 22б – шпангоут полособульб;

‪№ 18а – бимс-полособульб;

Sдд = 9,0мм – толщина настила двойного дна;

Sxh = 12x450мм – стенка карлингса;

Sxb = 14x220мм – поясок карлингса;

Sп = 11мм – толщина настила палубы;

Sб = 12мм – толщина наружной обшивки борта;

Sдн = 14мм – толщина днища.

1.Введение

На корпус движущегося судна могут действовать постоянные и случайные нагрузки.

Постоянные нагрузки, действующие в течение всего периода эксплуатации, - это вес корпуса, надстроек, судовых механизмов и принятого груза, силы поддержания и силы сопротивления воды движению судна. Силы веса судна и силы гидростатического поддержания направлены в противоположные стороны и уравновешивают друг друга. По длине судна эти силы распределены неравномерно. Так в трюмах, расположенных в средней части судна, груза больше, чем в концевых трюмах, особенно в первом. При полной загрузке судна генеральным грузом форпик и ахтерпик часто бывают пустыми. Главный двигатель занимает небольшую площадь в машинном отделении, но масса его значительна. Однако общая масса механизмов в машинном отделении обычно меньше, чем масса груза в полностью загруженном трюме. Силы поддержания также неравномерно распределены по судну. Их интенсивность зависит от величины вытесняемых объемов, которые постепенно уменьшаются от середины судна к оконечностям при плавании судна на тихой воде и непрерывно изменяются в условиях волнения.

Случайные нагрузки воздействуют на корпус в течение какого-либо промежутка времени и возникают при ударах волн, посадке судна на мель, столкновении судов.

Для упрощения расчетов действующие нагрузки условно делят на две категории: вызывающие общий изгиб корпуса или местный изгиб отдельных его элементов.

На тихой воде характер общей деформации корпуса обычно сохраняется в течение всего рейса, если распределение основных грузов или балласта постоянное. Изменяется только степень кривизны корпуса в ДП по мере расхода топлива и запасов. На волнении общая деформация корпуса изменяется циклически множество раз: прогиб корпуса чередуется с перегибом. Прочность корпуса обеспечивается с учетом повторяемости нагрузок. Наибольший изгибающий момент действует в районе середины судна.

Способность корпуса выдерживать нагрузки, действующие на отдельные его перекрытия и связи, определяет местную прочность. Среди местных нагрузок выделяют гидростатическое давление при аварийных затоплениях отсеков, сосредоточенные и распределенные силы при приеме и снятии грузов в районе грузоподъемных устройств, реакции кильблоков при постановке в док, сосредоточенные силы при швартовке и буксировке, силы обжатия корпуса льдом при ледовой проводке судна.

Фактически напряжения в конструкциях корпуса вычисляют как алгебраическую сумму напряжений от общего изгиба и местных нагрузок.

2. Выбор системы набора и материала корпуса.

На сравнительно небольших судах (длиной до 100 метров) величина изгибающего момента от общего продольного изгиба корпуса сравнительно невелика. Определяющими для таких судов являются местные нагрузки: давление груза, воды, удары волн, удары льдин и другие.

Размеры основных связей корпуса таких судов определяются, в основном, из условий обеспечения местной прочности, но они достаточны для обеспечения общей прочности судна. Общая продольная прочность судов длиной до 100 метров обеспечивается при сравнительно небольших толщинах наружной обшивки и настила верхней палубы.

Местная прочность корпуса легко обеспечивается при поперечной системе набора перекрытий. При поперечной системе набора главные связи расположены поперек судна. Связи днищевого перекрытия, за исключением далеко отстоящих друг от друга продольных связей состоят из сплошных или бракетных флоров на каждом практическом шпангоуте; связи бортового перекрытия состоят из шпангоутов с нормальным расстоянием друг от друга; связи палубного перекрытия состоят из бимсов.

Поперечная система набора сравнительно проста и экономична.

Исходя из приведенных данных, в данной работе считаем, что корпус набран по поперечной системе набора.

Для судов небольшой длины (до 120м) применяется обычно сталь углеродистая судостроительная марки ВСт3спII с пределом текучести ReH = 235 МПа. Так как L = 96.5м, то в данной работе принимаем, что для постройки судна будет применяться сталь именно этой мерки.

3. Расчет основных связей корпуса

3.1 Вертикальный киль

Высота вертикального киля определяется по эмпирической формуле:

hвк = 0,0078L + 0,3 = 0,0078*96,5 + 0,3 = 1,053м,

где L – расчетная длина судна, м.

Принимаем hвк = 1м = 1000мм.

Толщина вертикального киля определяется по формуле:

hвк 235 1000 235

Sвк = ¾¾*¾¾ = ¾¾*¾¾ = 12,5мм,

где ReH – предел текучести стали, которая принимается для постройки данного судна, м.

Согласно выпускаемым в промышленности листам принимаем толщину вертикального киля Sвк = 13,0мм.

3.2 Шпация

Шпация определяется по формуле:

а = 0,002L + 0,48 = 0,002*96,5 + 0,48 = 0,67м.

Принимаем шпацию а = 700мм.

3.3 Днищевые стрингеры

Число днищевых стрингеров определяется в зависимости от ширины судна.

Исходя из того, что судно набрано по поперечной системе и В = 15,8м (т.е. 8<В£16), располагаем по одному днищевому стрингеру с каждого борта.

Толщина днищевого стрингера Sст равна толщине флора Sст = Sфл = 9,0мм.

На флоре высотой более 900мм должны быть поставлены ребра жесткости толщиной не менее 0,8Sфл и высотой не менее 10 толщин ребра, но не более 90мм.

Принимаем Sрж =8мм.

При поперечной системе набора ребра жесткости флора устанавливаются так, чтобы неподкрепленный пролет флора не превышал 1,5м, поэтому в данной работе днищевой стрингер смещен. Одно из ребер жесткости располагается непосредственно под концом скуловой кницы.

Для доступа в междудонное пространство необходимо во флоре сделать лазы. Минимальная высота лаза 500мм, минимальная длина 500мм. Лазы располагаются посредине высоты флора. Отстояние кромки лаза от вертикального киля составляет 0,5 высоты вертикального киля. Отстояние кромки лаза от днищевого стрингера и ребер жесткости флора составляет 0,25 высоты флора в данном сечении.

Междудонное пространство используется для приемки балласта и технической воды. Кроме того, при доковании судна проверяется непроницаемость отсеков двойного дна наливом воды. Для вывода воздуха из отсеков двойного дна в атмосферу предусмотрены воздушные трубы, выходящие на верхнюю палубу. В верхней части флора у настила второго дна для выхода воздуха при заполнении отсека двойного дна жидкостью предусмотрены вырезы полукруглые диаметром 50мм. Для возможности осушения отсека во флорах выполнены аналогичные вырезы у обшивки днища.

Мидель шпангоут сухогруза по поперечной системе набора

Мидельшпангоут сечение корпуса корабля или иного плавсредства вертикальной поперечной плоскостью, расположенное на половине длины между перпендикулярами теоретического чертежа судна. Входит в число основных точек, линий и плоскостей теоретического чертежа. Может несовпадать с самым широким сечением корпуса. В этой плоскости обычно установлен реальный шпангоут. СИСТЕМА НАБОРА ПОПЕРЕЧНАЯ Набор корпуса судна, в котором главные непрерывные связи располагаются в поперечной плоскости (шпангоуты, бимсы). Назначение этих связей обеспечить поперечную прочность судна и передать местную нагрузку на жесткий контур судна (днище, борта, палуба и т. д.). С. Н. П. судов применялась в деревянном судостроении. В современных условиях она сохранилась на малых военныхсудах и на большинстве гражданских судов, как морских, так и речных, а также в оконечностях судов, набранных по продольной системе набора.

Мидель шпангоут сухогруза по смешанной системе набора

Мидельшпангоут сечение корпуса корабля или иного плавсредства вертикальной поперечной плоскостью, расположенное на половине длины между перпендикулярами теоретическогочертежа судна. Входит в число основных точек, линий и плоскостей теоретического чертежа. Может несовпадать с самым широким сечением корпуса. В этой плоскости обычно установлен реальный шпангоут.

СИСТЕМА НАБОРА СМЕШАННАЯ набор корпуса судна, в котором части корпуса, наиболее удаленные от нейтральной оси (днище, верхняя палуба), имеют чисто продольную систему набора, прочие же части корпуса (борта, остальные палубы) имеют чисто поперечную систему набора. Эта система набора, являющаяся наиболее выгодной вотношении веса корпуса, находит широкое применение в военном судостроении. Первыми военными судами, построенными по продольно-поперечной системе, являются наши линейные корабли типа "Марат"